Aliases: (C2×C62).5C4, C23.(C32⋊C4), C3⋊Dic3.12D4, C62.12(C2×C4), C62.C4⋊4C2, C32⋊4(C4.D4), C2.11(C62⋊C4), (C22×C3⋊S3).3C4, C22.5(C2×C32⋊C4), (C2×C32⋊7D4).4C2, (C3×C6).22(C22⋊C4), (C2×C3⋊Dic3).8C22, SmallGroup(288,436)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 — C62.C4 — (C2×C62).C4 |
Generators and relations for (C2×C62).C4
G = < a,b,c,d | a2=b6=c6=1, d4=c3, ab=ba, ac=ca, dad-1=ab3c3, bc=cb, dbd-1=b-1c, dcd-1=b4c >
Subgroups: 584 in 100 conjugacy classes, 16 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, C23, C23, C32, Dic3, D6, C2×C6, M4(2), C2×D4, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C4.D4, C3⋊Dic3, C2×C3⋊S3, C62, C62, C2×C3⋊D4, C32⋊2C8, C2×C3⋊Dic3, C32⋊7D4, C22×C3⋊S3, C2×C62, C62.C4, C2×C32⋊7D4, (C2×C62).C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4.D4, C32⋊C4, C2×C32⋊C4, C62⋊C4, (C2×C62).C4
Character table of (C2×C62).C4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 4 | 36 | 4 | 4 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 36 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | -2 | 2 | 1 | 2 | -1 | 0 | 0 | 3 | -3 | 0 | 3 | 0 | -3 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C62⋊C4 |
ρ12 | 4 | 4 | 4 | 4 | 0 | -2 | 1 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | -2 | -2 | 1 | -2 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ13 | 4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 1 | -1 | -2 | -1 | 2 | -3 | -3 | 0 | 0 | 3 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C62⋊C4 |
ρ14 | 4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | -2 | 2 | 1 | 2 | -1 | 0 | 0 | -3 | 3 | 0 | -3 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C62⋊C4 |
ρ15 | 4 | 4 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ16 | 4 | 4 | 4 | 4 | 0 | 1 | -2 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ17 | 4 | 4 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ18 | 4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 1 | -1 | -2 | -1 | 2 | 3 | 3 | 0 | 0 | -3 | 0 | -3 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C62⋊C4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | -4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | 0 | -1 | 0 | -3 | 0 | 0 | √-3 | √-3 | -2√-3 | -√-3 | 2√-3 | -√-3 | 3 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | 3 | 2 | -3 | 0 | -√-3 | √-3 | -2√-3 | 0 | -√-3 | 2√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | 0 | -1 | 0 | 3 | -2√-3 | 2√-3 | √-3 | -√-3 | 0 | -√-3 | 0 | √-3 | -3 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | -3 | 2 | 3 | 0 | -√-3 | √-3 | 0 | 2√-3 | √-3 | 0 | -√-3 | -2√-3 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | 0 | -1 | 0 | 3 | 2√-3 | -2√-3 | -√-3 | √-3 | 0 | √-3 | 0 | -√-3 | -3 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 2 | 0 | -1 | 0 | -3 | 0 | 0 | -√-3 | -√-3 | 2√-3 | √-3 | -2√-3 | √-3 | 3 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | -3 | 2 | 3 | 0 | √-3 | -√-3 | 0 | -2√-3 | -√-3 | 0 | √-3 | 2√-3 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -1 | 3 | 2 | -3 | 0 | √-3 | -√-3 | 2√-3 | 0 | √-3 | -2√-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 6)(3 7)(9 13)(12 16)(18 22)(19 23)
(1 21 15)(2 18 16 6 22 12)(3 9 23)(4 14 24 8 10 20)(5 17 11)(7 13 19)
(1 11 21 5 15 17)(2 6)(3 19 9 7 23 13)(4 8)(10 14)(12 16)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (2,6)(3,7)(9,13)(12,16)(18,22)(19,23), (1,21,15)(2,18,16,6,22,12)(3,9,23)(4,14,24,8,10,20)(5,17,11)(7,13,19), (1,11,21,5,15,17)(2,6)(3,19,9,7,23,13)(4,8)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (2,6)(3,7)(9,13)(12,16)(18,22)(19,23), (1,21,15)(2,18,16,6,22,12)(3,9,23)(4,14,24,8,10,20)(5,17,11)(7,13,19), (1,11,21,5,15,17)(2,6)(3,19,9,7,23,13)(4,8)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(2,6),(3,7),(9,13),(12,16),(18,22),(19,23)], [(1,21,15),(2,18,16,6,22,12),(3,9,23),(4,14,24,8,10,20),(5,17,11),(7,13,19)], [(1,11,21,5,15,17),(2,6),(3,19,9,7,23,13),(4,8),(10,14),(12,16),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,585);
(1 7)(2 4)(3 5)(6 8)(9 23)(10 20)(11 21)(12 18)(13 19)(14 24)(15 17)(16 22)
(1 21 13)(2 18 14 6 22 10)(3 15 23)(4 12 24 8 16 20)(5 17 9)(7 11 19)
(1 9 21 5 13 17)(2 6)(3 19 15 7 23 11)(4 8)(10 14)(12 16)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,7)(2,4)(3,5)(6,8)(9,23)(10,20)(11,21)(12,18)(13,19)(14,24)(15,17)(16,22), (1,21,13)(2,18,14,6,22,10)(3,15,23)(4,12,24,8,16,20)(5,17,9)(7,11,19), (1,9,21,5,13,17)(2,6)(3,19,15,7,23,11)(4,8)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,7)(2,4)(3,5)(6,8)(9,23)(10,20)(11,21)(12,18)(13,19)(14,24)(15,17)(16,22), (1,21,13)(2,18,14,6,22,10)(3,15,23)(4,12,24,8,16,20)(5,17,9)(7,11,19), (1,9,21,5,13,17)(2,6)(3,19,15,7,23,11)(4,8)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,7),(2,4),(3,5),(6,8),(9,23),(10,20),(11,21),(12,18),(13,19),(14,24),(15,17),(16,22)], [(1,21,13),(2,18,14,6,22,10),(3,15,23),(4,12,24,8,16,20),(5,17,9),(7,11,19)], [(1,9,21,5,13,17),(2,6),(3,19,15,7,23,11),(4,8),(10,14),(12,16),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,625);
Matrix representation of (C2×C62).C4 ►in GL4(𝔽7) generated by
4 | 5 | 2 | 6 |
0 | 6 | 0 | 2 |
3 | 3 | 3 | 1 |
0 | 0 | 0 | 1 |
3 | 5 | 3 | 2 |
3 | 1 | 2 | 6 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 3 |
4 | 5 | 3 | 4 |
3 | 2 | 2 | 1 |
4 | 4 | 1 | 6 |
0 | 0 | 0 | 6 |
2 | 1 | 5 | 6 |
0 | 2 | 1 | 5 |
3 | 4 | 2 | 4 |
3 | 3 | 2 | 1 |
G:=sub<GL(4,GF(7))| [4,0,3,0,5,6,3,0,2,0,3,0,6,2,1,1],[3,3,4,0,5,1,4,0,3,2,0,0,2,6,6,3],[4,3,4,0,5,2,4,0,3,2,1,0,4,1,6,6],[2,0,3,3,1,2,4,3,5,1,2,2,6,5,4,1] >;
(C2×C62).C4 in GAP, Magma, Sage, TeX
(C_2\times C_6^2).C_4
% in TeX
G:=Group("(C2xC6^2).C4");
// GroupNames label
G:=SmallGroup(288,436);
// by ID
G=gap.SmallGroup(288,436);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,219,100,675,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^6=c^6=1,d^4=c^3,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^3*c^3,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=b^4*c>;
// generators/relations
Export